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Abstract

Simulations of cardiac arrhythmias have shown great
potential to plan and optimize therapies. However, bio-
physical models are complex and involve a high compu-
tational cost that poses a problem for their clinical trans-
lations. Alternative methods such as Eikonal based sim-
ulations can help to reduce the cost at the expense of
not considering an action potential model. In this work,
we present a methodology to predict the action potential
curves during Eikonal simulations. We first train a model
with data obtained from biophysical simulations, and fol-
lowing we test their ability to obtain realistic action po-
tentials, given a cell state and the diastolic intervals. A
simulation study shown that this method is able to repro-
duce action potentials in a tissue slab during rotor activity
and different stimulation protocols, avoiding to solve ionic
models, and reducing dramatically the computational cost.

1. Introduction

Multi-scale models for heart electrophysiology have
shown a great potential to study complex mechanisms and
interactions occurring in cardiac tissue [1]. At organ level,
the use of heart models that include the properties of het-
erogeneous tissue and pathological substrates have been
proposed to study the vulnerability to arrhythmias and op-
timize therapies such as catheter based ablation [2]. It is
common to base those simulations on the monodomain
model (tissue level) coupled to detailed cell (ionic) mod-
els that include a high level of detail at subcellular level,
and require to solve a large number of ordinary differential
equations with short time steps (order of microseconds).
When those models have to be solved on a full heart fi-
nite element model, they impose additional constraints on
mesh resolution, that imply large computational cost that
make them impractical for clinical environments.

Several solutions have been presented, which include
the use of GPU-based solvers that can reduce the compu-
tational time [3], the use of minimal ionic models [4, 5],

or the use of phenomenological models [6]. To simulate
electrical diffusion on cardiac tissue, Eikonal models and
cellular automaton have been proposed to reduce the com-
putational cost, when subcellular interactions can be ne-
glected [7]. However, most implementations do not take
into account the detailed dynamic response of cells, that
can change action potential (AP) morphology and dura-
tion, as a function of diastolic interval (DI) and previous
cell state (AP memory).

In this study, we propose the use of the Eikonal model at
tissue level coupled to a cellular automaton that has been
trained with APs obtained from biophysical simulations
for a variety of cell types, and can produce realistic APs
(not only restitution curves) for changing conditions with
very low computational cost. First, we perform a simula-
tion study to generate APs that result from S1 and S1-S2
stimulation protocols. Following, we characterize the APs
and learn the relationship between current cell state, DI
and next cell AP. Finally, we assess the accuracy of the
estimation in tissue simulations, including rotor activity.

2. Material and Methods

In order to produce complete APs without the need of
solving any equation at cell level, we have formulated the
problem as a set of dynamic cell states that give rise to the
AP curves. Therefore, a simulation of a given cell AP can
be seen as a succession of states {si}ni=0. According to
this approach, given an initial cell state, s0, and a series
of activation times, {ti}ni=0, the simulation of a cell AP
can be modeled as the problem of predicting the successive
states {si}ni=1.

We define the function next(st, dit) = st+1, which de-
pends on the current cell state, and the DI to obtain the next
state that will define the corresponding AP. We assume that
a cell in a state xt will be activated at time tact, so that we
can obtain dit (dit = tact - apd90time(xt)).

We built a dataset from biophysical simulations with the
aim to create a large dataset of AP curves, together with the
corresponding DI values, and the resulting previous and
next states, i.e. AP curves.
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Figure 1. Graphic description of the proposed approach. It is divided in a training phase based on output of biophysical
simulations and a test phase where the model is used to predict the corresponding AP for each cell in an Eikonal based
simulation.

2.1. Generation of electrophysiological data

We performed a simulation study on three different 3D
tissue blocks to obtain the AP curves dataset for training
and testing. We considered six cell types: endocardium
(ENDO), mid-myocardium (MID), and epicardium(EPI)
in healthy, and remodeled conditions due to infarction
(border zone, BZ). We based our simulation study in the
ten Tusscher ionic model [8] at cell level, and the mon-
odomain model at tissue level. The simulations were per-
formed with the cardiac biophysical solver ELVIRA [9],
applying the conjugate gradient method with an integration
time step of 0.02 ms to compute the numerical solution.

To build the training set, we used a block of dimensions
3 × 3 × 0.25 mm for each cell type. Then, we stimulated
each tissue block with BCLs ranging from 300 ms to 1000
ms with steps of 100 ms, and from 310ms to 490ms with
steps of 20. This configuration allowed us to obtain the
relationship between DI and AP with a constant BCL. Fol-
lowing, we carried out a S1-S2 protocol, in which we first
stabilized the simulation to a constant BCL (S1), to then
trigger an activation with a shorter CL (S2). S2 ranged
from S1 value, to the minimum possible coupled stimu-
lus that depended on the effective refractory period. Dur-
ing the simulation we recorded the AP at four locations
(probes) aligned on the center of the the tissue block with
a temporal resolution of 20µs.

To generate the test data, we designed two scenarios
changing both the stimulation protocol and the geometry
to measure the capacity of generalization of the predic-
tion model to different conditions. In both cases, the AP
curves were recorded for all the points in the geometry
with a time resolution of 1ms. For the first scenario we
built a long slab of tissue of dimensions, 3 × 20 × 0.25
mm. We applied an S1-S2 activation protocol with values
different from the ones used in the test set. Namely, for

ENDO and EPI S1= 380, and S2∈ {360, 340, 320}, and
for MID, ENDO BZ, MID BZ and EPI BZ, S1= 380, and
S2∈ {360, 340, 320}. For the second scenario, we used a
squared EPI tissue block of dimensions 50×50×0.03 mm
where we generated a stabilized rotor and recorded the last
5000ms.

2.2. Segmentation and encoding of the ac-
tion potential curves

To build the training set, two main steps were carried
out: i) segmentation of the last two stimuli of each train
of the S1-S2 protocol, and ii) encoding of the AP curve
in a compact representation. Figure 1 contains a graphical
description of this procedure.

The segmentation step, started with the detection of the
minimum and maximum peaks of the AP curves. Then,
only the stimulus corresponding to the last S1, and S2
were processed. To store them in the AP curve data set,
we reformatted all the stimuli to 1000ms (sampled at 0.02
ms). Therefore, curves database was built with the 3-tuple
(ti, APi, next(APi)) elements.

Once the AP data set was built, each of the curves
was encoded by a feature vector built with 4 characteristic
points, (t, AP (t)), of the AP curves. The selected points
were: i) the upstroke peak, ii) the local minimum follow-
ing the spike, iii) the maximum of the plateau phase, and
iv) the point at 90% of the repolarization (APD90). A cell
state s = (t1, t2, t3, t4, ap1, ap2, ap3, ap4), is 8 dimension
vector with the coordinates of the 4 selected points (ti, api)
captured from an AP curve. We then build another data set,
retaining the index order of the previous one, made of the
encoded AP curves. Therefore, the elements of the data set
were as follow: (ti, si, next(ti, si)).

As we aimed to learn cell-state transitions from a pair,
DI, state, (di, s), from the last dataset, we built the ma-
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Figure 2. Comparison of the simulation on the slab of tissue at two different time instants. From top to bottom, simulations
for biophysical model, the prediction model and their difference. All data is provided in mV.

trix, X=(dii, si) and Y=(next(si)), by computing the DI
of each element and replacing ti with dii.

2.3. Action potential estimation

Although we consider a machine learning based regres-
sion model, we finally chose an approach based on finding
the nearest transition from the dataset. Note that a sam-
ple s ∈ X contains data from different nature and scales
(di and 4 points (t, ap(t))), and distance based ML-models
improperly weight the feature vectors producing inade-
quate results. In addition, the morphology differences be-
tween the states involved in a transition sample s → st+1

are generally reduced, however the diastolic interval has a
higher influence. Finally, big datasets of transition samples
(X → Y ) can be generated from a biophysical simulators
so, to build a search-model able to find the nearest (dii, si)
from the dataset and then simply return the corresponding
next(dii, si) seems a robust strategy compared to regres-
sion models that try to approximate next(dii, si).

When a new cell activation is produced, the activation
time (actt) is used to calculate the new and then, the cell
can compute its next state. We have split next function
in two sequential Nearest Neighbors (NN) search steps.
Firstly, we perform a NN-search exclusively with the dit
received on X , and keep the first k-neighbors. Secondly,
the current cell state, xt, is now used to find its NN among
the states selected in the previous step. Finally, the index
(from the dataset) of the nearest di-state tuple found is used
by the next function to return the corresponding state in Y
as the new cell state st+1.

3. Results

To assess the accuracy of the proposed model, we de-
signed two scenarios of test. In both the geometry and the
activation protocol differ from the ones used to build the
training set, for more details of both refer to section 2.

In table 1, there can be found the mean and standard
deviation of the absolute error of all the tissue types and
for all the test simulations carried out on the long tissue
slab. Although all errors have low mean absolute errors,
the standard deviation presents high values for all the tis-
sue types, specially for the ENDO in both healthy and BZ.
This high standard deviation is explained by the big and lo-
cal peaks of error than can be appreciated in the AP curves
plots in Figure 1. The main source of error is due to the
delay of around 1 ms that occurs during the fast depolar-
ization, and during the end of the repolarization were the
curve slope of the function makes a sharp bend. This phe-
nomenon of local error due to curve misalignment can be
appreciated in Figure 2 where some regions of the activa-
tion front show a small delay.

The last test scenario consists of the simulation of a self
sustained rotor. This scenario pushes the generalization of
the model to the limit, since the AP curves changes its mor-
phology under such extreme circumstances slowing the de-
polarization, as can be seen in figure 3. However the model
showed a performance similar to the slab scenario, proving
its robustness with a mean absolute error of 1.03 mV with
an standard deviation of 15.76 mV. By visual inspection
of Figure 3, it can be appreciated that the activation front
presents the same error as the one it presented on the slab.
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Figure 3. Comparison of the rotor simulation. In a) the prediction model, in b) the biophysical model, c) the difference.
All data is provided in mV.

Cell Type MAE STD Cell Type MAE STD
ENDO 1.59 13.46 ENDO BZ 3.41 8.21
MID 0.93 4.83 MID BZ 1.31 7.69
EPI 1.68 5.31 EPI BZ 1.89 4.97

Table 1. Mean and standard deviation of the absolute error
(in mV) computed over each point of the test mesh during
each of the test stimulus of the pacing protocol. MAE:
Mean absolute error, STD: Standard deviation

4. Conclusions

We have presented a methodology for approximation of
the AP curves based on a model that has been trained with
a large number of biophysical simulations. The model is
able to approximate the AP curves in simplified simula-
tions based on Eikonal diffusion, including complex sce-
narios such as rotors. This approach might facilitate the
clinical translation of simulations for therapy planning of
catheter based interventions.
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